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The principle of the Convolution Neural Network (CNN)

Technically, the convolution in deep learning is actually a “cross-correlation” operation, which is different 

from the convolution in signal processing. The main parameters of the convolution operation are kernel, 

stride, padding and output channel. Among them, the kernel is learnable and the receptive field of the 

convolution operation; stride is the number of pixels moved per step when the kernel traverses the input; 

padding adds a circle of 0s around the input feature map; output channel refers to the number of kernels.

Euler spatial domain model

The gif images are from [1][2]

Non-padding

Stride = 1
padding

Stride = 1

Non-padding

Stride = 2
Non-padding

Stride = 1 dilation = 2
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The Matrix Form of Convolution in PyTorch CPU implementation 

Image is from [14]

https://github.com/pytorch/pytorch/blob/e9902358df14dc4809e4f50b1208

8a5200a1862d/aten/src/ATen/native/ConvolutionMM2d.cpp

Here is the source code in CPU PyTorch for this implementation. For more detailed 

implementation information please kindly refer to the link.

First, All the patches will form the corresponding row of the matrix, which is so call image to rows.

Second, the flattened kernels are also formed as a matrix.

Finally, the convolution is formed as a matrix multiplication between the patching image and unfolding kernels.

Patch: It is the area the input and traversing kernel perform multiplication, which mean a step stride can generate a patch.
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The Generation of the matrix form in CPU PyTorch source code

https://github.com/pytorch/pytorch/blob/e9902358df14dc4809e4f50b12088a5200a1862d/aten/src/ATen/native/ConvolutionMM2d.cpp
https://github.com/pytorch/pytorch/blob/e9902358df14dc4809e4f50b12088a5200a1862d/aten/src/ATen/native/ConvolutionMM2d.cpp


The feature maps of the CNN
To visualize the features 

maps, a cat image with 

shape (256,256,3) is fed 

into the CNN model.

Code and results are from [3]

Deeper layer can capture global features by 

stacking convolution layers, which might help 

the classification.
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The Encoder-Decoder Architecture in CNN

Here is a conventional architecture of encoder-decoder, which can be used for supervised learning and unsupervised 

learning. If the output is the same as the input, we call it as Autoencoder:

Here is one computer vision domain example for autoencoder

Code and results are from [4]

As we can see, the reconstructed outcomes look the same as the input in most 

cases, which means that the latent state in the lower dimension space can 

somehow represent the corresponding image.

Input

output
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Graph Convolution Neural Network (GCN)

The GCN is similar to CNN since it is obtained from the CNN. For a convolution in deep learning, two main 

steps should be considered: i) how to identify the neighbors and ii)  how to aggregate the neighbors. 

For the first point, how the GCN find the neighbors? We use adjacency matrix A to identify neighbors.  

where A is the adjacent matrix denoting the neighbors, 𝐻(𝑙) is the nodes’ attribute and 𝑊(𝑙) is the kernel and B is the bias. 

Non-Euler spatial domain model

For the second point, how the GCN aggregate the neighbors? The GCN use sum method to aggregate the 

neighbors which is same as CNN.  
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GCN V.S CNN

To empress understanding, we compare GCN and CNN: the CNN uses the around pixels as neighbors while 

the neighbors in GCN should be identified by an adjacency matrix. For the aggregation method, both GCN 

and CNN sum up neighbors together as the final result.

Image is from [5]

Like the CNN, the stacking convolution layer can 

enlarge the receptive field of the model, the GCN can 

be stacked to capture multi-hop neighbor features

Besides, the Encoder-Decoder Architecture can be also 

applied into the graph structure data.

Image is from [6] Image is from [7] 9/37



The principle of the Recurrence Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a class of neural network that are helpful in modeling sequence data. They 

specialize in processing sequences and are often used in NLP because of their effectiveness in handling text. The most 

common used RNN models are Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU).

Temporal domain model

Images are from [8][9]

What about Attention V.S RNN?

• Attention needs to calculate the correlation at each time step, the time complexity of the simple attention is Ο(𝑛2).

• The time complexity of RNN is Ο(n), where n is the length of the sequence. 
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A type of fully connective neural network recurrent 

in the temporal domain

• Parameters are shared in temporal domain

• The current output is mainly relied on the previous output.



The introduction of the LSTM

Long Short-Term Memory (LSTM) is a type of RNN that is specifically designed to handle sequential data, 

such as time series, speech, and text. LSTM networks are capable of learning order dependence in sequence 

prediction problems.

Usually, 𝜎 is chosen as a sigmoid function S(x).

Image is from [10]

Input Gate

Forget Gate

Memory Cell

Output Gate

Output
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How we handle the video data which are time-series images?

An intuitive way is that we first apply the CNN to the images. After that, we flatten the CNN result as a vector 

and then feed into the RNN model. However, this manner can not handle spatial-temporal feature at the same 

time since it handles spatial and temporal features separately.  

The intuitive way Considering the LSTM, can we integrate the convolution 

into the LSTM? Rather than just conducting CNN and 

LSTM separately

Spatial-temporal domain model 

Images are from [11][10]
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The ConvLSTM for video prediction

ConvLSTM is a type of recurrent neural network for spatial-temporal prediction that has convolutional structures in 

both the input-to-state and state-to-state transitions. It determines the future state of a certain cell by the inputs and 

past states of its local neighbors.

Note that:

• The input-to-state transition means the input 𝑋𝑡 transits to 𝐻𝑡
• The state-to-state transition means the 𝐻𝑡−1, 𝐶𝑡−1 transits to 𝐻𝑡 , 𝐶𝑡

Previous

state

Next

state

Input

Output

where * is the convolution operation for spatial feature. ° is the element-

wise multiplication. As the spatial-temporal feature can be capture in one 

operator, the ConvLSTM can handle video prediction task.

Input Gate

Forget Gate

Memory Cell

Output Gate

Output

the ConvLSTM is similar to the LSTM while the matrix multiplication 

is replaced as convolution
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Images is from [12]
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Introduction of the spatial-temporal task for Near-surface Temperature

The Near-surface Temperature prediction (NTP) is one of the application task of weather forecast in spatial-

temporal domain. The model can be formulated as follows:

PS: The unit of the temperature is Kelvin. The formula of the transform is K=℃+273.15

All images which do not mention are from [13] 
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Observation in real-world application

Pearson Coefficient

we can make three key observations: 

(i) the grid pairs with a close distance have a high correlation, 

which reflects the short-range spatial correlations; suitable 

for CNN

(ii) the grid pairs with a long-distance may still have a strong 

correlation, which indicates the existence of long-range 

spatial correlations; suitable for GCN

(iii) the grid pairs with the same distance may have varying 

correlations, which shows that the spatial correlations are 

quite complex. suitable for spatial attention, a technique to 

reweight pixels based on their importance.

The observations imply that both long- and short-range spatial 

correlations would be beneficial for near-surface temperature 

prediction and grids with the same distances may have different 

contributions.

Difference distances identify by different colors
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The Main Idea of the Long- and Short range Convolution LS-Conv

The LS-Conv is design to capture long- and short- range spatial correlation in a convolution operator by 

unifying GCN and CNN.

1 2 3
4 5 6
7 8 9

Flatten

1 88

3

3

2 8…
…

9 8

9

Here is the conventional convolution procedure
the LS-Conv replaces scalar multiplication with 

graph convolution

We choose a data-driven method to generate the learnable adjacency matrix. 

After that, we flatten the input image into a matrix for long-range spatial 

correlation capturing. After the graph convolution, we fold the result back 

to an image and select the corresponding row to integrate the short-range 

spatial correlation. 18/37



The Overview of the LS-Conv

Here is the whole overview of the LS-Conv. Given an input X, The Node-based Spatial Attention is first applied to evaluate 

the importance of each grid of the X aiming to distinguish important nodes for long-range spatial correlations construction. 

Meanwhile, the learnable node embedding is initiated, which denotes the channel information of the corresponding grid. 

After the NSA, the LAGC module learns an adaptive adjacent matrix to model the long-range spatial correlations by using 

graph convolution kernel from LS-Conv kernel. Finally, in the LSI, these GCN outputs are aggregated in a CNN manner, 

where each GCN result is similar to the element-wise product result between kernel and input in conventional CNN. 

Consequently, these results will be summed together and placed at the corresponding position of the output Y.
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The Mechanism of Node-based Spatial Attention (NSA)

Spatial attention is a form of attention mechanism that focuses on specific regions of an image. It is used in 

computer vision tasks to improve the performance of CNNs by allowing them to focus on important regions of 

an image. As the input image can be viewed as nodes of the adaptive adjacency matrix, so we also call this 

module Node-based spatial attention (NSA).

PS:

Conv1@1 means the Conv2d operation with 1*1 kernel size
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Long-range adaptive graph constructor (LAGC)

we review the convention GCN, which is shown as follows:

Many graph-based task can easyly find neighbors. However, in meteorological task, it is hard for us to identify the 

neighbors. So we propose a data-driven method to learn the neighbors:

𝐸𝑔 is the learnable node embedding corresponding to the grid in the input X. The  multiplication of 𝐸𝑔 and 𝐸𝑔
𝑇 can be 

viewed as measuring the similarity of other node embedding vector. The ReLU activation function aims to guarantee 

the positive value in the learnable adjacent matrix and the SoftMax activation function is designed for the normalization. 

In this way, we design a data-driven adjacency matrix generation method to capture the meteorological long-range 

spatial correlation. 

where D is the degree matrix, 𝐷 𝑖, 𝑖 = σ𝑗=1
𝑁 𝐴[𝑖, 𝑗] and 𝐷 𝑖, 𝑗 = 0.The term 𝐷− Τ1 2𝐴𝐷− Τ1 2 is called adjacency matrix 

normalization.  𝐼𝑁 is the identity matrix also called the self-loop factor which means that the GCN consider both neighbors 

and itself.

21/37



Long- and short-range integrator (LSI)

We first conduct the graph constraint for the input X, which has shape (c, n×m). Then, a graph convolution is performed 

with the help of the LS-Conv kernel aiming to capture long-range spatial correlation. After the graph convolution, the result 

is reshaped into a new shape (n, m, f). Finally, we select the corresponding result based on the location of the LS-Conv 

kernel, which is same as CNN.
graph constraint

graph convolution

CNN manner in aggregation

• Light green outcomes is generated by the light green LS-

Conv kernel, so we pick up the first row in the first column 

as the final result.

• For the orange outcomes, which is generated by the second 

LS-Conv kernel. So we pick up the first row in the second 

column.

• Finally, we conduct sum aggregation in a CNN manner to 

capture short-range spatial correlation.
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Long- and short-range Convolution (LS-Conv)

Identify the important nodes for long-range spatial correlations

Adjacency matrix is constructed by a data-driven method

Graph constrain is applied to the input

Aggregate the GCN result in a CNN manner
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ConvLSTM equipped with LS-Conv (LS-NTP)

where Xt ∈ Rn×m×c is the input tensor at time-step t, ⋆ is 

the LS-Conv operator, and the ◦ is the element-wise 

multiplication.

Input Gate

Forget Gate

Memory Cell

Output Gate

Output

Upon the LS-Conv, we embed this new operator into the ConvLSTM (we replace the convolution operator with the LS-

Conv operator.)

24/37

The main difference from ConvLSTM

is we replace the convolution operator 

with the LS-Conv operator.



The framework of the final prediction model

After defining the spatial-temporal model, we use encoder-decoder architecture for the final prediction.
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Main Comparison

PS:

• SSIM is an index for measuring the similarity between two images.

• PSNR uses to measure image quality for image distortion.
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The comparison on each predictive time-step

We also compare the LS-NTP with other methods in  the four mentioned indexes on each predictive timestep.
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Ablation Study

To measures the effectiveness of the proposed components, we conduct ablation study

• w/o NSA, which does not consider spatial attention in LS-Conv operator;

• w/o LAGC, which does not consider adaptive graph in LS-Conv operator;

• w/o NSA & LAGC, which ablates both the NSA and LAGC modules;

• w/o LSI, which means we do not apply CNN after the adaptive graph convolution;

• DAGG-ConvLSTM, which leverages the DAGG [15] to perform the adaptive graph convolution.

The ablation study results are shown in Table. As we can see that the performance suffer different degree decreases by 

ablating different components.
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Q1: How does a long distance affect the performance?

We set a distance to filter out the entries in the adjacency matrix as zeros, 

whose distances to the corresponding grid are larger than a threshold d. 

Here d varies from 0 km to 6000 km (the largest distance of the selected 

zone). 

• When d = 0, the setting means no long-range spatial correlations are 

considered; 

• When d = 6000 the setting is equivalent to the original LS-NTP.
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Q2: How does the LS-Conv kernel affect the short-range spatial correlations?

we vary the LS-Conv kernel from 1 × 1 to 7 × 7

• the kernel of LS-Conv is 1 × 1 means we omit the short-range spatial correlations

• the kernel of LS-Conv is 3 × 3 means we consider short-range in 3 × 3 area and consider long-range 

spatial correlation outside this area.

A 3 × 3 kernel size reaches the best performance, which means considering non short-range spatial correlation or too 

large short-range spatial correlation helps little of the performance improvement.
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Q3: Can a larger convolution kernel capture the long-range spatial correlations?

To answer this question, we enlarge the kernel size of the baseline models from 3 × 3 to 9 × 9 in baseline 

model which kernel uses for  the spatial correlation capturing.

simply enlarge the convolution kernel size might introduce noisy information leading to a performance decreasing.
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Q4: Can we visualize the long-range spatial correlations?

As we have used a data-driven method to learn the long-range spatial correlations, we select the column of the 

adjacency matrix which means the long-range spatial correlation learned by the model. We visual two cases in 

two datasets.

the adaptive learning long-range spatial correlations are very obvious and reasonable 34/37



Q6: Can we visualize the predictive error performance
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Thank you for listening

Q&A
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